Tetrahedron Letters, Vol.22, No.26, pp 2517 - 2520, 1981 Printed in Great Britain

## DERIVATIVES OF 3-THIENYLPHOSPHONIC ACID AND 1,2-OXAPHOSPHOL-3-ENE

Christo M. Angelov \* and Kolio V. Vachkov Chair of Chemistry, Higher Pedagogical Institute, 9700 Shoumen, Bulgaria

<u>Summary:</u> Alkylsulfenyl chlorides react with 5-methyl-1,3,4-hexatrienyl-3phosphonic esters giving derivatives of 3-thienylphosphonic acid and 1,2-oxaphosphol-3-ene.

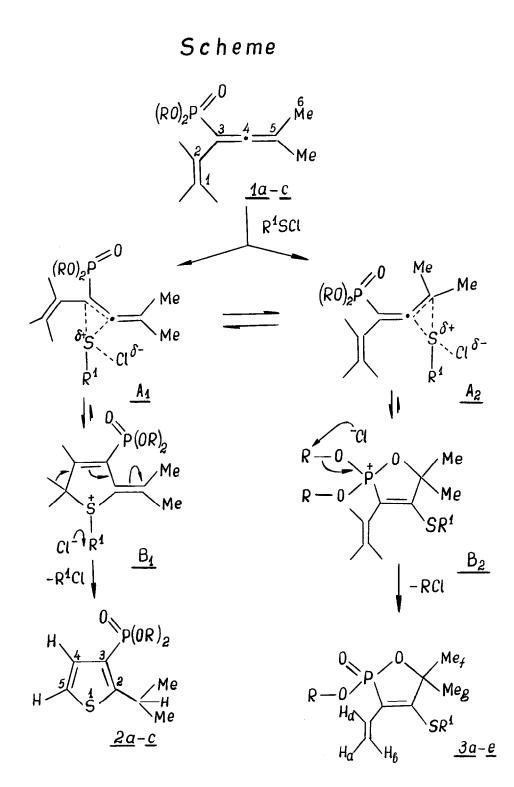
Recently our investigations on 3-methyl-1,2,4-pentatrienylphosphonic esters<sup>1</sup> with chlorine and sulfenylchlorides have shown that the addition of an electrophilic reagent results in an elimination of alkylchloride and the same time a five-membered heterocycles are formed. With chlorine the 1.2-dienic system of  $\pi$ -bonds and the phosphorilic group participate in the reaction, leading to the formation of 1,2- oxaphosphol-3-enes<sup>2</sup>, while with sulfenyl chlorid, the 1,3dienic system and the sulfur atom react, giving thiophenic derivatives<sup>3</sup>. Continuing the studies in this field, we have found that alkylsulfenyl chlorides react with 5-methyl-1,3,4-hexatrienyl-3-phosphonic esters<sup>1</sup> (1a-c) by the 1,2and 1.3-dienic sections. When the reaction is carried out in chloroform by cooling at  $-12 + -10^{\circ}$ C, a mixture of 3-thienylphosphonic (<u>2a-c</u>) and 1,2-oxaphosphol-3-enyl (3a-e) esters are formed, which could not be separated by vacuum frationation. The esters 2a-c, however, because of their low solubility in CCl<sub>n</sub>, are separated as an upper oily layer in this solvent from which the reaction product is obtained as a pure substance after distillation. The esters <u>3a-e</u> are isolated from the CC1, solution, together with very small amounts of 2a-c.

The structure of <u>2a-c</u> and <u>3a-e</u> is confirmed by their <sup>1</sup>H-, <sup>31</sup>P-NMR and IRspectra. Thus, in the <sup>1</sup>H-NMR spectra of 2-isopropyl-3-thienylphosphonic esters <u>2a-c</u> (Table 1) signals for H<sup>4</sup> and H<sup>5</sup> ( $\delta$  7.01 - 7.30) are observed, typical for spin system ABX. In the spectra of 1,2-oxaphosphol-3-enes <u>3a-e</u> (Table 2) in a

2517

<sup>1</sup>H- and <sup>31</sup>P-NMR spectra of <u>2a-c</u>

|           |                    |                                          |                                        | Table 1              |                                                  |                                |  |
|-----------|--------------------|------------------------------------------|----------------------------------------|----------------------|--------------------------------------------------|--------------------------------|--|
| N2        | R                  | н4                                       | n. shifts,<br>H<br>( CH <sub>3</sub> ) | б<br>31 <sub>Р</sub> | J Hz<br>H <sup>4</sup> -P<br>(H <sup>5</sup> -P) | н <sup>4</sup> -н <sup>5</sup> |  |
| <u>2a</u> | CH3                | 7.14aa<br>(7.30aa)                       | 3.94q<br>(1.32d)                       | -14.7                | 4•0<br>(3•0)                                     | 5.0                            |  |
| <u>b</u>  | °2 <sup>₩</sup> 5  | 7.14dd<br>(7.30dd)<br>7.04dd<br>(7.16dd) | 3.86g<br>(1.23d)                       | -11.9                | 4.0<br>(3.0)                                     | 5.0                            |  |
| <u>c</u>  | i-C <sub>3</sub> H | 7.01dd<br>7 (711dd)                      | 3.92 <u>q</u><br>(1.25d)               | -9•7                 | 4.0<br>(3.0)                                     | 5.0                            |  |


| <sup>1</sup> H- | and | <sup>31</sup> P-NMR | spectra | of | <u>3a-e</u> |   |
|-----------------|-----|---------------------|---------|----|-------------|---|
|                 |     |                     |         | 1  | Table       | 2 |

- -

|                           |                                                   |                  |                          |                  | Ta               | ble 2                             |         |  |
|---------------------------|---------------------------------------------------|------------------|--------------------------|------------------|------------------|-----------------------------------|---------|--|
|                           |                                                   |                  | ical shi                 |                  |                  | J Hz                              |         |  |
| NS                        | R                                                 |                  | r <sup>1</sup> s         |                  | 31 <sub>0</sub>  | Ha-Hd                             | Hd-P    |  |
|                           | (R <sup>1</sup> )                                 | (Hb)             | (Hd)                     | (Hg)             | - r              | (Hb-Hd)                           | <u></u> |  |
| <u>3a</u>                 | CH3                                               | 5•50d            | 2 <b>.</b> 45s           | 1.59s            | -30•5            | 10.8                              | 28.0    |  |
|                           | (CH <sub>3</sub> )                                | (5•82d)          | (6•63qq)                 | (1.48s)          | 1                | (16•4)                            |         |  |
|                           | CH3                                               | 5•48a            | CH3<br>1.420             | 1 <b>.</b> 56s   |                  | 10.6                              |         |  |
| $\underline{b}(i-C_3H_7)$ |                                                   |                  | CH                       |                  | -29.8            |                                   | 28•4    |  |
|                           |                                                   |                  |                          |                  |                  | (16.2)                            |         |  |
| đ                         | °2 <sup>H</sup> 5                                 | 5•40d            | 2 <b>.35s</b>            | 1 <b>.</b> 47s   | -28.             | 2 (17.6)                          | 28.8    |  |
|                           | с <sub>2<sup>н</sup>5</sub><br>(сн <sub>3</sub> ) | (5 <b>.74</b> 8) | (6.5799)                 | (1 <b>.</b> 39s) | -28.             | -<br>(17•6)                       | )       |  |
|                           | °2 <sup>∰</sup> 5                                 | 5•42d            | сн <sub>3</sub><br>1.36t | <b>1.</b> 50a    |                  | 10 <b>.</b> 6                     | 28•4    |  |
|                           | (°2 <sup>H</sup> 5)                               | (5•74a)          | CH22.97<br>(6.58qq)      | a (1.41          |                  | (16.8)                            |         |  |
|                           | i-0 <sub>3</sub> H <sub>7</sub>                   | 5•41a            | 2 <b>.</b> 37s           | 1.48             | 3 <b>8</b><br>27 | 11.0<br>'• <sup>8</sup><br>(17.2) | 28.2    |  |
| <u>e</u>                  | (CH <sub>3</sub> )                                | (5•74d)          | (6•56qq)                 | (1.40            | )s)              | (17.2)                            |         |  |
|                           |                                                   |                  |                          |                  |                  |                                   |         |  |

weak field (  $\delta$  5.40 - 6.63) a multiplet signal for protons of the vinyl group is found characteristic for the spin system ABCX. The chemical shifts of <sup>31</sup>P of all compounds (Tabl. 1 and 2 ) determined with 85%  $H_3PO_4$ as external standard are typical for such structures<sup>3,4</sup>. In the <sup>1</sup>H-NMR spectrum of the crude reaction products, containing 2b and 3c, we observed signals for the protons of  $CH_3Cl$  ( $\delta$  3.03) and  $C_2H_5Cl$  ( $\delta$  CH<sub>3</sub> 1.68, CH<sub>2</sub> 3.60) together with the signals for the protons of 2b and 3c. It was found that the ratio of the two phosphonates depends on temperature. At 0°C in the reaction mixture of 2a and 3a, the 1,2-oxaphosphol-3-ene predominates (2a:3a = <sup>2</sup> 1.00 : 1.33), while at -40°C the 3-thienyl-

phosphonic ester is present in larger amounts (2a:3a = 1.25 : 1.00). The chemical transformations thus observed (see the Scheme ) are in



accordance with the following reaction mechanism. The initial reaction act is the attack of electrophilic sulfur on the most nucleophilic atom of the trienic system of  $\pi$ -bonds (C<sup>4</sup>) with the formation of two episulfonium ions  $A_1$  and  $A_2$ . The ion  $A_1$  is in the plane of the  $\pi$ -bond of the vinyl group (s-cis conformation), and for this reason  $A_1$  is easily transformed in the more stable five-membered cyclic sulfonium ion  $B_1$ . The both methyl groups at C<sup>5</sup> stabilized  $A_2$  which facilitates its interaction with the phosphorilic group. As a result the ion  $B_2$  with a quaziphosphonic structure is formed. Further the ion  $B_1$ reacts through protonic isomerization and elimination of  $R^1$ Cl to <u>2a-c</u>, while  $B_2$ through Arbusov's rearrangement gives <u>3a-c</u>.

The change in the <u>2a-c</u> to <u>3a-e</u> yields ratio with temperature is probably depending on the stability of the episulfonium ions. At higher temperature  $A_2$  favours the oxaphospholenic cyclization. At low temperature  $B_1$  is formed faster shifting the equilibrium to the thiophenic derivatives. The simultaneous realization of the both cyclization processes is connected with introduction of 1,2and 1,3-dienic parts of the  $\pi$  -electronic system into the reaction course. This fact is obviosly due to the ability of the sulfur atom to form cyclic ions<sup>5,6</sup>, which are further transformed into stable five-membered heterocyclic compounds. <u>Acknowledgement:</u> The authors are indebted to Mr.V.B.Lebedev (Lensovet Lenin-

grad Technological Institute, USSR) for measurement of the <sup>31</sup>P chemical shifts.

## References:

1. Ch.M.Angelov, M.Kirilov and B.I.Ionin, Zh.Obshch.Khim., 49, 1960 (1979).

2. Ch.M.Angelov, M.Kirilov, B.I.Ionin and A.A.Petrov, <u>Zh.Obshch.Khim.</u>, <u>49</u>, 2225 (1979).

3. Ch.M.Angelov, M.Kirilov, K.V.Vachkov and S.L.Spassov, <u>Thetrahedron Lett.</u>, 21, 3507 (1980).

4. D.W.Allen, B.G.Hutley and Malcolm I. Mellor, <u>J.Chem.Soc., Perkin</u> II, 63 (19)
5. D.R.Hogg, <u>Mech.React.Sulfur Compd.</u>, 87 (1970).

6. L.P.Razteikene, D.I.Greichute, M.G.Lin'kova, V.L.Knunianc, <u>Usp.Khim</u>., 1041 (1977).

(Received in UK 22 April 1981)

2520